Physics of Charging in Dielectrics and Reliability of Capacitive RF-MEMS Switches

نویسندگان

  • George Papaioannou
  • Robert Plana
چکیده

The dielectric charging constitutes a major problem that still inhibits the commercial application of RF MEMS capacitive switches. The effect arises from the presence of the dielectric film (Fig.1a), which limits the displacement of the suspended electrode and determines the device pull-down state capacitance. Macroscopically, the dielectric charging is manifested through the shift (Fig.1b) (Rebeiz 2003, Wibbeler et al. 1998, Melle et al. 2003, Yuan et al. 2004) or/and narrowing (Czarnecki et al. 2006, Olszewski et al. 2008) of the pullin and pull-out voltages window thus leading to stiction hence the device failure. The first qualitative characterization of dielectric charging within capacitive membrane switches and the impact of high actuation voltage upon switch lifetime was presented by C. Goldsmith et al. (Goldsmith et al. 2001) who reported that the dependence of number of cycles to failure on the peak actuation voltage follows an exponential relationship. Particularly it was reported that the lifetime improves by an order of a decade for every 5 to 7 V decrease in applied voltage. The lifetime in these devices is measured in number of cycles to failure although experimental results have shown that this tests do not constitute an accurate figure of merit and the time the device spends in the actuated position before it fails is a much better specification to judge device reliability (Van Spengen et al. 2003). The aim to improve the reliability of capacitive switches led to the application of different characterization methods and structures such as the MIM (Metal-Insulator-Metal) capacitors that allowed to determine the charging and discharging times constants (Yuan et al. 2004, Lamhamdi 2008) as well as to monitor the various charging mechanisms (Papaioannou 2007a), since these devices marginally approximate the capacitive switches in the pull-down state. A method that approximates more precisely the charging process through asperities and surface roughness in MEMS and allows the monitoring of the discharging process is the Kelvin Probe Force Microscopy (Nonnenmacher 1991). This method has been recently employed for the investigation of the charging and discharging processes in capacitive switches (Herfst 2008, Belarni 2008). The charging of the dielectric film occurs independently of the actuation scheme and the ambient atmosphere (Czarnecki et al. 2006). Up to now the effect has been attributed to the charge injection during the pull-down state (Wibbeler et al. 1998, Melle et al. 2003, 14

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and simulation of a RF MEMS shunt capacitive switch with low actuation voltage, low loss and high isolation

According to contact type, RF MEMS switches are generally classified into two categories: Capacitive switches and Metal-to-Metal ones. The capacitive switches are capable to tolerate a higher frequency range and more power than M-to-M switches. This paper presents a cantilever shunt capacitive RF MEMS switch with characteristics such as low trigger voltage, high capacitive ratio, short switchin...

متن کامل

Understanding and Improving Longevity in RF MEMS Capacitive Switches

This paper discusses issues relating to the reliability and methods for employing high-cycle life testing in capacitive RF MEMS switches. In order to investigate dielectric charging, transient current spectroscopy is used to characterize and model the ingress and egress of charges within the switch insulating layer providing an efficient, powerful tool to investigate various insulating material...

متن کامل

High-cycle Life Testing of Rf Mems Switches (preprint)

RF MEMS capacitive switches capable of orderof-magnitude impedance changes have demonstrated operating lifetimes exceeding 100 billion switching cycles without failure. In situ monitoring of switch characteristics demonstrates no significant degradation in performance and quantifies the charging properties of the switch silicon dioxide film. This demonstration leads credence to the mechanical r...

متن کامل

Compact Model of Dielectric Charging in RF MEMS Capacitive Switches

RF MEMS capacitive switches show great potential for use in wireless communication device. However, their widespread insertion in commercial products requires further improvements in their longterm reliability. Dielectric charging is one of the factors that impact switch reliability. Dielectric charging is understood to mean the accumulation of electric charge in the insulating dielectric layer...

متن کامل

A Mim Capacitor Study of Dielectric Charging for Rf Mems Capacitive Switches

MIM capacitors are considered equally important devices for the assessment of dielectric charging in RF MEMS capacitive switches. Beside the obvious similarities between the down state condition of RF MEMS and MIM capacitors there are also some important differences. The paper aims to introduce a novel approach to the study of dielectric charging in MEMS with the aid of MIM capacitors by combin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012